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Abstract
Considering the insufficiency of numerical study on the percussion characteristic of hydraulic rock drill, which restricts
the improvement of efficiency and reliability, a coupling model including the impact piston, spool valve, impact accumula-
tor, and connecting pipelines was established taking into account the oil compressibility, oil leakage, and pressure drop in
valve ports. The rebound velocity of impact piston was calculated based on the stress wave theory. The simulation
results revealed the coupling mechanism of percussion system. Pressure curves of the piston’s front-chamber and rear-
chamber, and valve’s left-chamber and right-chamber were obtained by field rock drilling test. Then, the velocity curve of
impact piston was obtained after judging the striking point through the feature of rear-chamber’s pressure spike, so were
the rock drill’s impact energy, impact frequency, and impact power. The simulation and experimental results have consis-
tency. And, on this basis, the influence of spool valve’s damping clearance (d) and pipeline diameters (d1, d2) connecting
the impact piston and spool valve on the percussion performance and system cavitation was researched. The results
show that the larger d is better considering reversal time of spool valve, the impact frequency of rock drill, pressure fluc-
tuation, and cavitation relief. But too large d will cause over quick impact velocity of the spool valve, which may lead to
strong vibration and the damage of spool valve. The optimal value of d is 0.01 mm by comprehensive consideration. The
pipeline diameters have an important influence on the pressure fluctuation and negative pressure in rear-chamber. The
diameters should be larger than 18 mm to alleviate the cavitation. This article provides means for the design and
research of rock drills.
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Introduction

In recent years, hydraulic rock drills have been widely
used in many applications, such as mining, coal mine
roadway excavation, railway tunnel, highway tunnel,
and rock excavation projects because of their high effi-
ciency, clean, and safety.1,2 The hydraulic rock drill
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with high frequency and high power becomes the first
choice facing the scale of mining and larger-scale tun-
neling.3,4 Different from the DTH (down-the-hole)
hammers,5–7 the hydraulic rock drill is driven by
hydraulic system and belongs to top hammer drilling.
As the core component of rock drill, the performance
of percussion system decides the whole level of rock
drill to a great extent.8,9 However, the structure of per-
cussion system is complicated, and its working process
obeys the hydraulic–mechanical–pneumatic coupling
laws,10 which introduces great difficulty in researching
on the percussion characteristic of hydraulic rock drill.

J Seo and colleagues11–13 developed an analysis
model for rock drill using SimulationX software, which
was validated by the static calibration and measure-
ment tests of impact frequency and impact energy
under three different supply pressure conditions. Based
on a simulation model for rock drill built by AMESim,
JY Oh et al.14 studied the dynamic performance of per-
cussion system and effects of rock hardness on it. JY
Oh et al.15 also investigated the influence of percussion
system parameters on percussion performance and
found that the impact power was affected by supply
pressure, areas of the impact piston and shuttle valve,
and position of the hydraulic port strongly. Q Hu
et al.16 studied the percussion performance of rock drill
with single-degree-of-freedom impact oscillator model
and revealed that the simulation results were consistent
with stress wave test results. S Yang and colleagues17–19

analyzed the percussion performance of rock drill and
optimized the parameters with simulation model, which
was validated by the percussion performance test. C
Song et al.20 optimized the design parameters of percus-
sion system for rock drill using Taguchi method. Y Li
et al.,21 J Hu and Q Hu,22 and H Zhao et al.23 analyzed
the influence of the opening at zero position of distri-
bute valve on the internal motion law for the hydraulic
rock drill. W Ding and X Huang24 established a
hydraulic impactor simulation system based on the the-
ory of bond graph in AMESim software. Z Zhou
et al.25 and Z Yin and Y Hu26 studied the dynamic
characteristics of a percussion system using AMESim
and obtained motion law of the impact piston and
spool valve. Z Wen et al.27 built a simulation model for
a percussion system and studied the effects of some fac-
tors on the percussion performance.

The previous research works on percussion system
are mostly the simulation analysis, and the simulation
models are too simplified. The simulation results are
quite different from the actual condition. There are
many problems including cavitation erosion of impact
piston and bush, impact powerless of the rock drill, and
so on, which cannot be researched by simulation. For
this reason, a coupling model including impact piston,

spool valve, impact accumulator, and connecting pipe-
lines will be established considering the oil compressi-
bility, oil leakage, and pressure drop in valve ports. The
rebound velocity of impact piston will be calculated
based on the stress wave theory. The field rock drilling
test will be conducted to verify the numerical model by
contrasting the change law of pressure and percussion
performance by simulation and experiment. Above all,
the influencing factors on the percussion characteristic
of rock drill will be researched.

Working principle of hydraulic rock drill

Figure 1 shows the schematic diagram of percussive
drilling. Under the action of percussion system, the
impact piston hits the shank adapter with high fre-
quency and high speed. Its kinetic energy is transmitted
to rock through shank adapter, drill rod, and drill bit in
the form of stress wave. The impact piston will rebound
under the reflected wave because of the difference in
wave resistance.

As shown in Figure 2, the percussion system with no
constant-pressurized chamber is mainly composed of
an impact piston, a spool valve, an impact accumula-
tor, a regulating plug, and a body. The impact piston
connects the spool valve with pipeline 1 and pipeline 2.
Their movement obeys the principle of hydraulic slave.
The pressure in front-chamber and rear-chamber
exchanges under a certain frequency. The frequency of
rock drill can be adjusted through the regulating plug.

Figure 1. Schematic diagram of the percussive drilling.

Figure 2. Schematic diagram of the percussion system.
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Coupling model of percussion system

Stress wave model

The solving equation of incident wave is as follows28

Pr =

Zh�Zq

Zh + Zq
vpp, 0\t\th

Zh�Zq

Zh + Zq

Zh�Zq

Zh + Zq

� �
vpp, t.th

8<
: ð1Þ

where Pr is the incident stress wave (Pa); Zh and Zq are
the wave resistance (N sm21) of impact piston and
shank adapter, respectively; vpp is the last impact velo-
city of impact piston (m s21); and th is the duration of
incident wave (s).

The wave resistance of the impact piston and shank
adapter are equal, namely, Zh=Zq=Z. So

Pr =
1
2

Zvpp, 0\t\th
0 t.th

�
ð2Þ

Among them
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c
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q
8><
>: ð3Þ

where Lh is the length of impact piston (m); c is the
wave velocity (m s21); A, E, and r are the cross sec-
tional area (m2), elastic modulus (Pa), and density (kg
m-3) of impact piston, respectively.

Extensive experiments4,29,30 illustrate that near-linear
relationship exists between the penetration force and
penetration depth. So, equation (4) is satisfied

F =
Ku

Fmax � rK umax � uð Þ

�
ð4Þ

where K is the load stiffness of rock (Nm21); u was the
penetration depth (m); and g is the unload coefficient.

The wave superposition equation (5) is as follows
regarding the interface surface between drill bit and
rock as the research object

F =Pr +Qr
du
dt
= 1

Z
(Pr � Qr)

�
ð5Þ

where Qr is the reflected wave.

Equations (6) and (7) are dynamic equations for
loading and unloading section, respectively, which are
obtained by uniting equations (2), (4), and (5)

F =Pr +Qr
du
dt
= 1

Z
(Pr � Qr)

F =Ku

t= 0 , F = 0

8>><
>>: ð6Þ

F =Pr +Qr
du
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= 1

Z
(Pr � Qr)
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t = th, F =Fmax=Kumax

8>><
>>: ð7Þ

Then, function of reflected wave is obtained

Qr =

1
2
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K
Z
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Z
th
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The rebound velocity of impact piston _xp(0) can be
expressed as equation (9) according to the law of
momentum conservation

_xp(0)=

vpp�l
2g
� 2

l
� 1:6

� �
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Among them

l=
Z2

mp � K
ð10Þ

Mathematical model of impact piston

As shown in Figure 3, Cv1 and Cv2 are the front-
chamber and rear-chamber of impact piston, respec-
tively. Considering viscous friction and friction force of
seal, the dynamic model (equation (11)) of impact pis-
ton can be established according to Newton’s mechanics

mp€xp +Kp _xp +Ff

_xp

�� ��
_xp

=A1P1 � A2P2 ð11Þ

Figure 3. Structure diagram of the impact piston part.
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Among them
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where mp is the mass of impact piston (kg); Kp is the vis-
cous friction coefficient (kg s21); Ff is the friction force
of the seal (N); _xp and €xp are the velocity (m s21) and
acceleration (m s22) of impact piston, respectively. A1

and A2 are the effective area of the front-chamber and
rear-chamber (m2), respectively. m is the dynamic visc-
osity of hydraulic oil (kg (m s)21); e is the eccentricity; hi
is the fit clearance (m) corresponding to Lpi (i=1, 2,
and 4); b is the seal width (mm); f is the friction coeffi-
cient between the seal and impact piston; and z is the
compressibility correlation coefficient of O-ring. Other
parameters are shown in Figure 3.

The liquid flow continuity equation of front-
chamber (equation (13)) and rear-chamber (equation
(14)) are established

V10 +A1xp

Ke

� dP1

dt
=Qp1 � A1 _xp � C3Qu1 � Ql1 � Ql2

ð13Þ

V20 � A2xp

Ke

� dP2

dt
=A2 _xp � Qp2 � C4Qu2 � Ql3 � Ql4

ð14Þ
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3

12uLp1
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3

12uLp2
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pdp2h3

3

12uLp3

� P2

Ql4 =
pdp4h4

3

12uLp4

� P2
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where Vi0 is the initial volume (m3) of Cvi (i=1, 2); Ke

is the oil elastic modulus (MPa); C3 and C4 are vari-
ables for state judgment (0 or 1); and Pi is the pressure
(Pa) corresponding to Cvi (i=1, 2). Other parameters
are shown in Figure 3.

Mathematical model of spool valve

Considering the viscous friction and pressure in each
chamber, the dynamic model (equation (16)) of spool
valve can be established referring to Figure 4

mv€xv +Kv _xv =Av1P4 +Av2P02 +Av3P6

� Av1P3 � Av2P01 � Av3P5

ð16Þ

Among them

Av1 =
p

4
dv1

2

Av2 =
p

4
(dv2

2 � dv1
2)

Av3 =
p

4
(dv4

2 � dv2
2)

Kv =
pmffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p dv1(lv1 + lv10)

h5

+
dv2 lv2 + lv9ð Þ

h6

� �

8>>>>>>>>><
>>>>>>>>>:

ð17Þ

where mv is the mass of spool valve (kg); Kv is the vis-
cous friction coefficient (kg s21); xv and xv are the velo-
city (m s21) and acceleration (m s22) of spool valve,
respectively; Pi is the pressure (Pa) corresponding to
Cvi (i=3, 4, 5, 6); Avi (i=1, 2, 3) is the effective area
of spool valve (m2); and h5 and h6 is the fit clearance
(m) corresponding to dv1 and dv2. Other parameters are
shown in Figure 4.

The liquid flow continuity equation of valve’s left-
chamber (equation (18)), right-chamber (equation
(19)), Cv5 (equation (20)), and Cv6 (equation (21)) are
established.

V30 � Av1xv

Ke

� dP3

dt
=Av1 _xv � Qu3 ð18Þ

Figure 4. Structure diagram of the spool valve part.
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V40 +Av1xv

Ke

� dP4

dt
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dt
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dt
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Among them
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where Vi0 is the initial volume of Cvi (i=3, 4, 5, 6)
(m3). Other parameters are shown in Figures 3 and 4.

Mathematical model of impact accumulator

It is close to an isentropic process in the air chamber of
impact accumulator while drilling. So, equation (23) is
satisfied

dPh

dt
=

1:4Ph

VH

Qh ð23Þ

Among them

VH =VH0 �
ðt
0

Qhdt ð24Þ

where Ph is the pressure in oil chamber (Pa); VH is the
gas volume (m3); VH0 is the initial gas volume (m3); and
Qh is the flow rate into accumulator (m3 s21).

Mathematical model of pipelines

The equilibrium equation and liquid flow continuity
equation of pipeline 1 and pipeline 2 (Figure 2) were
established considering the capacity, resistance, and
inertia

P01 � P1 =R1 � Q01 + I1 � dQ01
dt

Q01 � Q1 =C1 � dP01
dt

P2 � P02 =R2 � Q2 + I2 � dQ2

dt

� �
Q2 � Q02 =C2 � dP2

dt

� �

8>>><
>>>:

ð25Þ

Among them

Ri =
128mLi

pdi
4

Ci =
pdi

2Li

K

Ii =
rLi

pdi
2

8><
>: ð26Þ

where Ri, Ci, and Ii (i=1, 2) are the liquid resistance,
liquid capacity, and hydraulic inductance of pipelines,
respectively. Li and di (i=1, 2) are the length and dia-
meter of pipelines, respectively.

Numerical simulation and experimental
validation

Numerical simulation of percussion system

Table 1 shows the initial parameters of percussion sys-
tem. The percussion characteristic is simulated by sol-
ving the coupling model with MATLAB software. The
simulation results are shown in Figure 5.

From Figure 5, we can observe the following:

1. The high pressure alternately appears in the
front-chamber and rear-chamber, namely, no
constant-pressurized chamber.

2. There exists pressure fluctuation in chambers
because of high-frequency and high-velocity
reciprocating motion of the impact piston and
spool valve, and the peak pressure of rear-
chamber can reach 30MPa during the braking
phase of impact piston. The pressure of rear-
chamber will drop sharply when hydraulic oil
comes into left-chamber of the valve and then a
pressure spike appears because of impact pis-
ton’s rebound.

3. The reversal time of spool valve is about 2ms,
and there exists deceleration before destination.

Table 1. Initial parameters of the percussion system.

Parameters Value Parameters Value

mp 7.93 (kg) dv1 13 (mm)
mv 0.38 (kg) dv2 14.5 (mm)
dp1 46 (mm) dv4 30 (mm)
dp2 50 (mm) h5 0.015 (mm)
dp2 46 (mm) h6 0.015 (mm)
dp4 43 (mm) Ke 1700 (MPa)
Lp1 22 (mm) M 3.9 3 10-2

(kg (m s)21)
Lp2 31 (mm) B 1.7 (mm)
Lp3 31 (mm) f 0.05
Lp4 28 (mm) z 0.1
h1 0.015 (mm) Qin 105 (L min21)
h2 0.03 (mm) Pin 20 (MPa)
h3 0.03 (mm) g 1.5
h4 0.015 (mm) K 6
d 0.1 (mm) VH0 0.33 (L)
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Field rock drilling test

As shown in Figure 6, the rock drill was mounted in a
drill rig. Pressure sensors were installed on the housing.
The pressure in the impact piston’s front-chamber and
rear-chamber, and valve’s left-chamber and right-
chamber was tested synchronously. The sampling fre-
quency could reach 204.8 kHz with 40 opening channels
using the LMS SCADAS Mobile. The software for sig-
nal acquisition was the LMS Test Xpress 7A. Pressure
sensors were the Titanium Electronic Equipment

Company’s PPM-S114A type, whose response fre-
quency was 100kHz. Pressure signals were transmitted
to the test system via shielded wire and BNC plug.

Simulation model validation using experimental
results

Pressure curves. The comparison of pressure curves by
experiment and simulation is shown in Figure 7. We
can observe that they have consistency in frequency,

Figure 6. Scene graph of the field rock drilling test.

(a) (c)

(b)

Figure 5. Simulation results of the percussion system: (a) pressure curves of impact piston’s front-chamber and rear-chamber,
valve’s left-chamber and right-chamber; (b) displacement curves of the impact piston and spool valve; and (c) velocity curves of the
impact piston and spool valve.
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amplitude, and change law. The wave frequencies of P1

and P2 were different due to the spatial structure of the
chambers, so was the return oil pressure of P2.

Percussive performance. The kinetic equation (27) of
impact piston is established. The striking point can be
judged through the feature of rear-chamber’s pressure
spike because of impact piston’s rebound. Then, the

velocity curve of impact piston can be obtained by
feeding pressure data of front-chamber and rear-
chamber into equations (11), (12), and (27), which is
shown in Figure 8. After that, the impact velocity can
be obtained and so are the impact energy, impact fre-
quency, and impact power

_xp = _xp0 +
Ðt
0

€xpdt

xp = xp0 +
Ðt
0

_xpdt

ÐT
0

_xpdt= 0

8>>>>>>><
>>>>>>>:

ð27Þ

Table 2 contains relative deviations between experi-
mental and simulation results. The impact velocity of
piston by simulation was higher due to the difference of
return oil pressure by experiment and simulation. But
the error rates are all less than 10% and even the error
rate of impact frequency is 0.47%, which verifies the
rationality and correctness of the simulation model.

Analysis on factors influencing percussion
characteristic

Y Li et al.31 found that the damping clearance of the
spool valve (d) is closely related to the percussion

(a) (b)

Figure 7. Correlation curves by experiment and simulation: (a) pressure curves of impact piston’s front-chamber and rear-
chamber; (b) pressure curves of valve’s left-chamber and right-chamber.

Figure 8. Testing curve of the pressure in chambers and
velocity curve of the impact piston calculated with experimental
data.

Table 2. Error rate between simulation and experimental
results of the percussion performance.

Impact
velocity

Impact
energy

Impact
frequency

Measurement 10.47 m s21 434.76 J 42.35 Hz
Simulation 10.77 m s21 460.03 J 42.55 Hz
Error rate 2.87% 5.81% 0.47%
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performance, but they do not reveal the rule by simula-
tion. G Yang and colleagues32,33 found the cavitation ero-
sion phenomena of the impact piston and bush (Figure 9)
in long-term use of rock drills, while they failed to find out
the problem nature. The pressure and flow in the percus-
sion system change greatly. The cavitation characteristics
of system will be affected by the response of impact piston,
which is related to the diameter of pipeline 1 and pipeline
2 (Figure 2). Therefore, the simulation will be carried out
with different d and pipe diameters considering the capac-
ity, resistance, and inertia.

Damping clearance of spool valve

The velocity curve of impact piston and spool valve,
and the pressure curve of front-chamber and rear-
chamber are obtained by simulation with different
damping clearances of spool valve d, which is shown in
Figure 10, and we can observe the following:

1. The damping clearance of spool valve (d) has an
important influence on the impact velocity and
reversal time of spool valve. When d is 0.08, 0.10

Figure 9. Cavitation erosion of the impact piston and bush.

(a) (b)

Figure 10. Simulation results of the percussion system with different d values: (a) velocity curves of the impact piston and spool
valve; (b) pressure curves of impact piston’s front-chamber and rear-chamber.
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and 0.12mm, the impact velocity of spool valve
is 1.499, 2.475, and 3.915m s21, and the reversal
time of spool valve is 2.8, 2.1 and 1.8ms.

2. The motion period of impact piston is affected
because of variation of the spool valve’s motion.
When d is 0.08, 0.10, and 0.12mm, the motion
period was 24.1, 23.5 and 23ms, and the corre-
sponding impact frequency of rock drill is 41.49,
42.55, and 43.48Hz.

3. During the braking phase of impact piston, the
pressure fluctuation of rear-chamber (P2) will
become severe when d is 0.08mm, and the peak
pressure can reach 40MPa. Besides, the nega-
tive pressure (–0.09MPa) of front-chamber (P1)
will last 0.8ms, which is longer than that when
d is 0.10 and 0.12mm. This will aggravate the
cavitation of percussion system.

It can be concluded that the larger d is better consid-
ering reversal time of spool valve, the impact frequency
of rock drill, pressure fluctuation, and cavitation relief.
But too large d will cause over quick impact velocity of
the spool valve, which may lead to strong vibration

and the damage of spool valve. Based on the above
analysis, the damping clearance of spool valve d should
be 0.01mm by comprehensive consideration.

Connecting pipeline diameter

The simulation is carried out with different diameters
of pipeline 1 and pipeline 2 (Figure 2) considering the
capacity, resistance, and inertia. The results are shown
in Figure 11, and we can observe the following:

1. The impact frequency of rock drill has little
difference.

2. During the braking phase of impact piston, the
pressure fluctuation in rear-chamber will
become very severe when pipeline diameter is
17mm. In contrast, the pressure fluctuation is
stationary when pipeline diameter values are 18
and 19mm.

3. When pipeline diameter is 17mm, the negative
pressure (–0.09MPa) in rear-chamber will
appear continuously during the return accelera-
tion phase of impact piston, which will aggra-
vate the cavitation of percussion system.

It can be found that the pipeline diameter should be
larger than 18mm considering the pressure fluctuation
and cavitation relief.

Conclusion

1. The calculation formula of impact piston’s
rebound velocity was derived. The coupling
model including impact piston, spool valve,
impact accumulator, and connecting pipelines
was established considering the structural fea-
ture and dynamic characteristics of the percus-
sion system.

2. The pressure curves of impact piston’s front-
chamber and rear-chamber, valve’s left-chamber
and right-chamber were obtained by the field
rock drilling test. The velocity curve of impact
piston was acquired. The simulation and experi-
mental results had consistency. The simulation
model was verified.

3. The influence of damping clearance (d) on the
percussion performance was researched. The
results show that the larger one is better consid-
ering reversal time of spool valve, the impact
frequency of rock drill, pressure fluctuation,
and cavitation relief. But too large one would
cause over quick impact velocity of the spool
valve, which may lead to strong vibration and
the damage of spool valve. Based on the above
analysis, the damping clearance of spool valve

Figure 11. Simulation results of the percussion system with
different diameters of connecting pipeline.
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(d) should be 0.01mm by comprehensive
consideration.

4. The cavitation erosion of the impact piston and
bush is closely related to the damping clearance
(d) and pipeline diameters (d). The negative
pressure (–0.09MPa) of front-chamber (P1) will
last 0.8ms when d is 0.08mm. It is longer than
that when d is 0.10 and 0.12mm. This will
aggravate the cavitation of percussion system.
Besides, when the pipeline diameter is 17mm,
the negative pressure (–0.09MPa) of rear-
chamber will appear continuously during the
return acceleration phase of impact piston,
which will aggravate the cavitation of percus-
sion system. The pipeline diameter should be
larger than 18mm considering the pressure fluc-
tuation and cavitation relief.
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Appendix 1

Notation

A1, A2 effective area of the front-chamber and
rear-chamber (m2)

A,E, and r cross sectional area (m2), elastic
modulus (Pa) and density (kgm-3) of
impact piston

Avi effective area of spool valve (m2)
b seal width (mm)
c wave velocity (m s21)
C3, C4 variables for state judgment (0 or 1)
Cv1, Cv2 front-chamber and rear-chamber of

impact piston
f is the friction coefficient between the

seal and impact piston

Ff friction force of the seal (N)
h5, h6 fit clearance (m) corresponding to dv1

and dv2
hi fit clearance (m) corresponding to Lpi

(i=1, 2, 4)
K load stiffness of rock (Nm21)
Ke oil elastic modulus (MPa)
Kp viscous friction coefficient (kg s21)
Kv viscous friction coefficient (kg s21)
Li, di
(i=1, 2)

length and diameter of pipelines (m)

Lh length of impact piston (m)
mp mass of impact piston (kg)
mv mass of spool valve (kg)
Pi pressure (Pa) corresponding to Cvi

(i=1, 2, 3, 4, 5, 6)
Ph pressure in oil chamber (Pa)
Pr incident stress wave (Pa)
Qh flow rate into accumulator (m3 s21)
Qr reflected wave
Ri, Ci, and
Ii (i=1, 2)

liquid resistance, liquid capacity, and
hydraulic inductance of pipelines

u penetration depth (m)
uA displacement of drill rod after

unloading
VH gas volume (m3)
VH0 initial gas volume (m3)
Vi0 initial volume of Cvi (i=1, 2, 3, 4, 5, 6) (m3)

th duration of incident wave (s)
vpp last impact velocity of impact piston

(m s21)
Zh, Zq wave resistance (N sm21) of impact

piston and shank adapter
_xp,€xp velocity (m s21) and acceleration (m s-2)

of impact piston
_xv,€xv velocity (m s21) and acceleration (m s-2)

of spool valve

g unload coefficient
d damping clearance of spool valve
e eccentricity
m dynamic viscosity of hydraulic oil

(kg (m s)21)
z compressibility correlation coefficient

of O-ring
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